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KBQA is a task that requires to answer questions by using semantic structured information in knowledge base. Previous work in
this area has been restricted due to the lack of large semantic parsing dataset and the exponential growth of searching space with
the increasing hops of relation paths. In this paper, we propose an efficient pipeline method equipped with a pretrained language
model. By adopting beam search algorithm, the searching space will not be restricted in subgraph of 3 hops. Besides, we propose a
data generation strategy, which enables our model to generalize well from few training samples. We evaluate our model on an
open-domain complex Chinese question answering task CCKS2019 and achieve Fl-score of 62.55% on the test dataset. In
addition, in order to test the few-shot learning capability of our model, we randomly select 10% of the primary data to train
our model, and the result shows that our model can still achieves Fl-score of 58.54%, which verifies the capability of our

model to process KBQA task and the advantage in few-shot learning.

1. Introduction

Due to the proliferation of artificial intelligence (AI), smart
systems have made significant achievements in communica-
tion and information extraction [1-8]. Since a sophisticated
smart system can bring much convenience and efficiency,
the research in this field has attracted extensive attention
from academic and industrial circles.

A KBQA system aims to answer questions (QA) by
understanding the semantic structure and extract the
answers in large knowledge base (KB).Recently, tremendous
KBQA models are proposed to effectively utilize KB to
answer “simple” questions. Here, “simple” refers to ques-
tions that can be answered with a single predicate or a pred-
icate sequence in the KB. For instance, “Who directed
Avatar?” is a simple question due to its answer can be
obtained by a single triplet fact query (?, director_of, Ava-
tar). To answer such questions, plenty of rule-based [9],

keyword-based [10], and synonym-based methods [11-14]
have been proposed. However, questions in real life are usu-
ally more complex which can only be answered correctly by
a multihop query path with constraints. As is shown in
Figure 1, for answering a complex question, a sequence of
operations needs to be generated, including multihop query
and answers combination. Recently, the use of KB to answer
such complex questions (KBCQA) has attracted growing
interests prodigiously [15]. Previous state-of-art KBCQA
models can be categorized into a taxonomy that contains
two main branches, namely, information retrieval-based
(IR-based) and neural semantic parsing-based (SP-based)
model. The IR-based model first recognizes topic entities
in the natural language and links them to node entities in
knowledge base [16-19]. Then, all nodes surrounding
around the topic nodes are regarded as candidate answers,
and a score function is used to model their semantic rele-
vance and predict the final answers. Methods based on
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FIGURE 1: The subgraph of KB and two query paths.

semantic parsing usually includes a Seq2Seq module which
converts natural languages into executable query languages
and an executor module which executes the generated logi-
cal sequence on KB to obtain the final answers [20-24].

However, although the state-of-art models have made
great achievements, several challenges still exist. Firstly, the
dependency of annotated data is a thorny problem for SP-
based models, which is usually settled by using a breadth-
first search (BFS) to produce pseudo-gold action sequences
and adopting the reinforce learning (RL) algorithm [25,
26]. Yet since BFS will inevitably ignore many other plausi-
ble annotations and RL usually suffers from several chal-
lenges, such as sparse reward and data inefficiency, the
research of SP-based models is immensely hindered. Sec-
ondly, both IR-based and SP-based methods suffer from
the large searching space. For better performance on
KBCQA task, large KBs, such as Wikidata or FreeBase, are
usually needed [27, 28]. Although these KBs contain com-
prehensive knowledge, they also bring vast search space
when searching a query path with more than 3 hops. We
record the average number of relations in one-hop and mul-
tihop subgraphs of a topic entity in our training dataset. It is
shown that in one-hop subgraphs, the average number is
515, while in 2-hop and 3-hop subgraphs, it grows to 1920
and 6408, respectively. This exponential growth of generated
candidate tuples makes it expensive and difficult for calcula-
tion. Thirdly, most previous work requires large KBCQA
datasets to train their model, such as complex web questions
and QALD [29, 30]. However, these large datasets are usu-
ally in English, hindering research in more realistic settings
and in languages other than English.

To solve the three problems above, we propose a
template-based model consisting of question classification,
named entity recognition, query path generation, and path

ranking module. Our contribution can be categorized into
three fields:

(1) We propose a data-efficient model equipped with a
pretrained language model BERT which can achieve
high performance but only use tiny amount of data.
Thus, our model can be utilized to process KBQA
task in some languages without large KBQA datasets

(2) By adopting beam search algorithm and using
ERNIE [31] to score for each searching branch, the
spatial complexity and time complexity have been
greatly dropped, but the generating accuracy still
remains competitive

(3) We put forward a method to construct artificial data
on predefined schemas of query graphs, allowing our
model to process questions with novel categories
which are excluded by training set

With the utilize of pretrained language model BERT and
predefined schemas of query graphs, our model can effec-
tively extract and filter the query tuples for a complex ques-
tion. Also, we adopt beam search algorithm to relieve the
exponential growth with increasing hops, which make it
possible to handle multihop questions.

This paper is organized as follows: In Section 2, we
review works on NER and beam search, which are the basis
of our experiments. In Section 3 we present the overall archi-
tecture and then introduce each key component in detail. In
Section 3, we demonstrate the evaluated models and the
methodology used to generate the sentence embeddings. In
Section 4, we describe the experimental setup and evaluation
of the proposed model. Finally, we summarize the contribu-
tion of this work in the Section 5.
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2. Related Work

Recently, with the rapid development and increasing atten-
tion of deep learning, the research on natural language
processing has made great process. Especially when sup-
ported by emerging word embedding technologies and
pretrained language models, the effectiveness of knowledge
base question answering has been greatly improved. In this
section, we will introduce some previous work related to
the submodules of our model including named entity rec-
ognition (NER) and beam search algorithm. Besides, some
few-shot KBQA models and a template-based model will
also be introduced.

Named entity recognition is a key component in NLP
systems for question answering, information retrieval, and
relation extraction. Early NER models are mainly based on
unsupervised and bootstrapped systems [32, 33] or feature-
engineering supervised task [34, 35]. Nowadays, researchers
tend to use neural network for NER task. NER is often
solved as a sequence labeling problem by using the condi-
tional random field (CRF) which requires a set of predefined
features. Recently, some effective neural network
approaches, especially for bidirectional long short-term
memory, significantly improve the performance of CRF for
NER task. Huang et al. use two LSTMs to capture past fea-
tures and future features in sequence tagging task [36].
Then, a CRF layer is used to efficiently grasp the sentence
level tag information of the sentence. The BiLSTM CREF is
usually employed as the cornerstone of many subsequent
improved NER models. BERT BiLSTM CRF uses BERT to
embed extract rich semantic features into vectors and sends
them to the BiLSTM CRF [37]. This model has achieved
state-of-art performance in many NER tasks [38].

Beam search is a common heuristic algorithm for decod-
ing structured predictors. When generating query paths for
complex multihop questions, we need to consider longer
relation path in order to reach the correct answers. However,
the search space grows exponentially with the length of rela-
tion paths, bringing expensiveness for calculation and stor-
age. The core idea of beam search is to use a score
function to keep Top-K candidate relations instead of con-
sidering all relations when extending a relation path. Thus,
the definition of score function determines the performance
of Bean Search. Chen et al. (2019) proposed to keep only the
best matching relation with a path ranking module that con-
siders features extracted from topic entities and semantic
information of the generated query paths [20]. Lan et al.
(2019) also keep only one candidate relation using a tradi-
tional Siamese architecture where both the question and
the candidate paths are each separately encoded into a single
vector before the two vectors are matched [39]. The experi-
mental results of these two models show little performance
dropped but with significant reduction in spatial complexity
and time complexity.

Since the expensiveness of constructing the annotated
datasets, several works have been focused on few-shot
learning for KBQA task. Chada et al. (2021) proposed a
simple fine-tuning framework that regards the query path
generation as a text-to-text task [40]. By leveraging a pre-

trained sequence-to-sequence models, their method out-
performs many state-of-art models with an average
margin of 34.2 F1 points on various few-shot settings of
multiple QA benchmarks. Hua et al.(2020) proposed a
semantic parsing based method using BFS to find the
pseudo-gold annotation of a question and learning a rein-
forcement learning (RL) policy to generate a query
sequence for obtaining the final answer [41].

Our model is most inspired by a template-based Chinese
KBCQA model proposed by Wang et al. [42]. They use a
pipeline method including a NER module, a query path gen-
eration module, and candidate tuple ranking module and
process the question step by step. In NER module, they
attach the BiLSTM CRF layer with a BERT layer to better
understand the semantic information in the question, which
gets quite high accuracy in topic entities recognition. Then,
they extend one or two relations from the topic entity to
generate the query paths and adopt bridging technology to
process questions with multiple entities. Finally, a candidate
query path ranking module is carefully designed to select the
final query path. The differences between their work and our
model are that we process the one-entity and multientity
questions separately with a question classification module
and predefine a set of query schema to restrict the searching
space. On the predefined query pattern, we use a strategy to
construct artificial questions which improve the ability of the
classification model for few-shot learning. Moreover, we
adopt beam search algorithm when generating query paths,
which helps us achieve comparable performance but only
using 10% resource of calculation and storage.

3. Our Method

In this section, we will present the overall architecture
(shown in Figure 2) and then introduce each key component
of the proposed model in detail.

3.1. Method Overview. The general idea behind our method
is to process the question step by step. Given a question,
we first encode it with a BERT layer, and then, the represen-
tations will be passed to an entity linking module (Section
3.2) of BERT-BiLSTM-CREF layer and a question classifica-
tion module (Section 3.3) trained with extra manually con-
structed samples (Section 3.5). With the recognized topic
entities and a specific category the question belongs to, we
can refer to a more precise schema (Section 3.4) to generate
the query path in a narrower searching space. However,
since the query graph of a complex question may involve
multiple relations, such simple generating program will
bring intolerable time complexity and spatial complexity
and bring calculating burden to the candidate tuple ranking
module. To solve this, we adopt a heuristic algorithm for
graph search (Section 3.6) based on a pretrained text-
match model, which greatly decreases the number of candi-
date query paths. Afterwards, a candidate tuple ranking
module is designed to sift out the final path using the above
PTM-TextMatch model. By executing the golden query
tuple, we can retrieve the answer in knowledge base.
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F1GURE 2: Basic framework of our model.

Besides, we are not to search aimlessly in KB when gen-
erating query subgraph. Instead, we refer to a set of prede-
fined schemas of all possible query graphs in complex
question answering. This policy will not only narrow the
searching space significantly but also provide a semantic
framework for reference when constructing artificial
questions.

3.2. Node Extractor. The main goal of this module is to iden-
tify topic entities in the question. This module includes toke-
nization with dictionaries, named entity recognition (NER),
and entity linking.

3.2.1. Tokenize. Different from English tokenize, Chinese
tokenizing usually uses dictionaries as a supplementary to
tokenize Chinese question text into Chinese words. In this
paper, we use a dictionary provided by CCKS consisting of
all subjects in KB, all entities, and their mentions in mention
dictionary.

3.2.2. Named Entity Recognition. In the NER module, we
encode the question with BERT layer and then pass it
through a BiLSTM to capture the information of context
and a CREF layer to predict label of each token. Let us use
Q= (t;,t;, t;, -, t,) to represent a tokenized question. We

put Q into a BERT layer to encode representations with

semantic knowledge. Next, the representations X,ﬁ‘ are

passed through a BiLSTM layer and CRF layer [28].

For each input token, the context information is cap-
tured by two LSTMs, where one capture information from
left to right and the other from right to left. At each time step

t, a hidden vector h_; (from left to right) is computed based

—
on the previous hidden state 4, ; and the input at the current
step x,. Then, the forward and backward context representa-

— —
tions, generated by h, and h,, are concatenated into a long

vector which we represent as h, = [Z : (P;] The basic LSTM
function is defined as follows:

SR
1l
Q Q
/N
3,
| — |
S
C
+
>
~_

i tanh
=006 +f 0,

h, =0, ®tanh (c,),

where WT and b are trainable parameters; o()is the sigmoid
function; i,, o,, and f, indicate input, output, and forget
gates, respectively; © represents the dot product function;
and x, is the input vector of the current time step.

The output vectors of the BILSTM contain the bidirec-
tional relation information of the words in a question. Then,
we adopt CRF to predict labels for each word, considering
the dependencies of adjacent labels. The CRF is the Markov
random field of Y given a random variable X condition and
included an undirected graph G, where Y are connected by
undirected edges indicating dependencies. Formally, given
the observation variables H = higl, and a set of output values
y€{0,1}, where y =1 means, the corresponding token is a
topic entity, and y = 0 is not. CRF defines potential function
as

p<y|h>=zih I ¢.00 k). 2)
)

seS(ysh
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where Z,, is a normalization factor overall output values, S(
¥, h) is the set of cliques of G, and ¢ (y,, h,) is the clique
potential on clique s.

Afterwards, in the BILSTM-CRF model, a softmax over
all possible tag sequences yields a probability for the
sequency. The prediction of the output sequence is com-
puted as follows:

y, =arg max,,0(H,y),

n
A)’v)’iﬂ + zpi%"
i=0

(3)

=

o(H.y)=,

1

Il
(=]

where A is a matrix of transition scores, Ay Y
score of a transition from the tag y, to y,,, n is the length of
a sentence, P is the matrix of scores output by the BiLSTM

network, and P, is the score of the ¥ tag of the i" word

represents the

in a sentence.

3.2.3. Entity Linking. In this module, we link the recognized
named entity to the entity in KB and select a set of candidate
topic entities with a mention dictionary. The mention dictio-
nary is provided by CCKS sponsors describing mapping
relations from mentions to node entities. After obtaining
mentions of entities in a question, we correspond them to
relevant node entities. Then, we need to extract helpful fea-
tures from the mentions and entities to select the potential
candidate entities. In this work, we extract six features as fol-
lows: the length of entity mention (f;), the TF value of entity
mention (f,), the distance between the entity mention and
interrogative word (f;), word overlap between question
and triplet paths (f,), and popularity of candidate entities

(f;)- The popularity is calculated as v/k, where k represents
the number of relation path the candidate entity has within
2-hop graph. We assume that an entity with larger f,, f,,
f4 and f; and smaller f, is more likely to be a topic entity.

These six features will be calculated and put into a linear
weighing layer to output relative scores. Entities with Topk
score build the candidate entities set.

The score is calculated using the following function:

s=w - fitwy - ftws f+rw, - fytws:fs (4)

where f; represents the i feature and w; represents the cor-
responding weight.

3.3. Question Classification. In order to improve the effi-
ciency of our model, we use a pretrained language model
BERT to classify the complex questions into two categories,
one topic entity question and multientity question, and pro-
cess each of them separately. In one entity question, pre-
dicted paths usually extend from the topic entity with one
relation or a sequence of relation hops. While in multientity
questions, correct answers can only be obtained accurately
by executing the query paths extended from several topic
entities in the question. For instance, the question “Whose
husband is the director of Avatar?” is one-entity question
because its query paths (3, wife_of, t. t, director_of, Avatar)

can be extracted from the “Avatar” through the relations
“director_of” and “wife_of” and the transitional entity t.
Meanwhile, “Which actors in Avatar born in British?” is a
complex question because the correct query paths can only
be generated from the entity “Avatar” and “British,” respec-
tively, through the relations “actor_of” and “born_in”. In
addition, we generate artificial questions in a semantic struc-
tured form to improve the performance of our classification
model. The detailed implementation will be represented in
Subsection 3.5.

Given a question, we encode it with words encoding,
position encoding, and segment encoding and attach a spe-
cial token [CLS] at the beginning of a question to separate
different sentences. Then, the semantic information will be
captured with a multihead attention system, and a dense
layer will be attached to obtain the prediction.

3.4. Predefine the Query Schema. The golden key to solving
the KBCQA task is to map entities of a question into a spe-
cific query graph. A semantic parsing-based model transfers
the KBQA task into a Seq2Seq task. By feeding the model
with numerous annotated data, SP-based model can under-
stand the semantic framework of a question and refine cor-
responding query graph. An information retrieval-based
model adopts a different method that searches all query
graphs surrounding the extracted topic entities and then
uses a candidate tuple ranking module to sift the final query
graphs. However, with limited data, it is challenging to learn
the query structure of questions, let alone changing it to an
executable action sequence. In this work, we relieve this
problem by predefining the schema of query graph and
adopt beam search to pruning the searching space of multi-
hop query paths.

Inspired by Aqqu [43], we propose an inverse solution
that we first take a deep insight into numerous Chinese mul-
tihop questions and propose eight searching schemas for
complex questions as shown in Figure 3. By predefining
the schema of query graph, our model can benefit from three
aspects:

(a) Predefining the schema introduces prior knowledge,
which stipulates the semantic structure of the que-
ried question and greatly prunes the search space

(b) Since the patterns of query tuples are specified, we
can easily turn each query tuples into its semantic
form and calculate the similarity between the artifi-
cial question and real question with a pretrained lan-
guage model, which we define as the score of the
query path we generate

(c) Extra data can be constructed on the enumerated
query schema to train the classification model, which
allows the model to learn the basic semantic knowl-
edge of classifying questions

We assume that the diversity of candidate tuples will
lead to poor performance of candidate query path ranking
module. Thus, we divide the query schema into two modules
according to number of topic entities the query pattern has.
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ALGORITHM 1: Multihop relation extraction. For each query schema, we generate a set of candidate query paths P, where T represents the

hop number of the schema.

When generating query paths, we use two separate modules
to generate candidate query paths. For one-entity question,
we simply search the subgraph of the topic entity within
two relation hops. While for questions of multiple entities,
we generate query paths on the searching schemas shown
in Figure 3. The gray ones represent topic entities we already
know. The white one represents transitional entity we need
not record, and the red one represents the answer we query.
Let n represents the number of candidate topic entities, and
m represents the number of true topic entities in a given
question. Since combinatorial number C}' grows too large
when m is greater than 3, we only consider questions con-
taining three or fewer topic entities.

3.5. Artificial Data Construction. For better predicting which
class a question belonging to and alleviating the need of

labeled training data, we generate substantial artificial ques-
tions on the predefined query schemas. In our method, we
randomly select a node entity in KB and extend a query path
from the entity. When generating a query path, we are not to
consider all branches in a random searching schema.
Instead, we conduct the algorithm on the predefined query
schema which has been introduced in Subsection 3.4. For
instance, as for the above question “Whose husband is the
director of Avatar?,” the corresponding query schema is (x
, 7y, L1, 75, e.), where x represents the answer and r; and r,
represent any relations in two-hop query path extended
from the topic entity e through an intermediate entity ¢.
We generate the artificial question by replacing mentions
of topic entities (in this example is “Avatar”) and relations
(“wife_of”, “director_of”) with mentions of randomly
selected node entities and correlated relations. In addition,
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if the query schema is excluded in training samples, we only
need to manually construct a fake question corresponding to
the query schema and then execute the above steps.

Since our predefined query schema contains semantic
structure for both one-entity and multientity questions, our
constructed samples can lead the pretrained language model
to converge in a direction which is more compatible with
our specific classification task. Besides, the ratio of questions
of different query patterns should be carefully controlled in
order to improve the generalization of created data.

Although our constructed questions have some differ-
ences from the real questions in semantic expression, our
model can still learn extra semantic structure of questions
in two classes. In our experiment, we constructed 5k artifi-
cial questions and use them to train our classification model.
With the help of pretrained language model, our model can
handle some questions that have never shown in training set.
As the results in Section 4 shown, given only 10% of training
data, our model can achieve good performance in classifying
the questions.

3.6. Beam Search. It is worth to note that when extending
multihop relations of the two type questions above, query
path generation module often suffers from the vast searching
space. To solve this, we adopt a heuristic algorithm beam
search algorithm equipped with a pretrained language model
BERT to score for each breach of relations; thus, we avoid
exhaustive search on irrelevant relations. When extending
a new relation path at n-step, we try to add the relation r,
to the previous generated query path R,_; and use the strat-
egy introduced in Artificial Data Construction to transfer
the graph into a semantic form S,. Then, S, and original
question Q are tokenized and concatenated with a special
token [SEP] as

input = [CLS]S, [SEP]Q. (5)

This two sentences are fed into a pretrained language
model of downstream task to calculate the semantic similar-
ity which represents the score for r, given a subquery path
R,_;. The formulation is defined as

Sco(r,|R,_,) = BERTLayer(input). (6)

At each extending step, we only consider relations with
Topk score for further search, which significantly excluded
some irrelevant query branches. The result in Section 4.3.1
shows that by adopting the beam search algorithm, the accu-
racy of query path generation remains competitive, but the
number of candidate paths decreases above 80%. The
detailed description is seen in Algorithm 1.

4. Experiments

In this section, we study the performance our model
achieves on complex question answering with limited train-
ing data. We take an insight into each module and conduct
ablation experiments to better understand our model.

TaBLE 1: Number of triples, entity type, and entity linking in PKU-
Base.

Type Triples
Number of data 61,006,527

Entity linking
13,930,117

Entity type
25,182,627

TaBLE 2: Results of ablation experiments in entity linking module.

Type One entity Multientity
Baseline 0.848 0.726
w/o f, 0.841 0.733
wlo f, 0.848 0.721
w/o f, 0.843 0.744
wlo f, 0.838 0.706
w/o fs 0.849 0.637

TaBLE 3: We evaluate our model on primary training datasets,
where created samples are excluded.

Data Train Valid Test
10% 82.90 84.31 80.13
10% + created data 87.51 89.54 82.75
50% 94.95 93.99 88.50
50% + created data 95.12 93.72 89.41
100% 97.39 95.42 88.76
100% + created data 99.09 95.45 91.11

4.1. KB and Datasets. Our model uses an open-domain KB
PKU-Base, which adopts resource description framework
(RDF) as their data format and contains billions of SPO
(subject, predicate, and object) triples [30], as shown in
Table 1. We train and evaluate our model on CCKS datasets,
which contain 2298, 766, and 766 pairs of questions.

4.2. Entity Linking. In entity linking module, we remove
each feature of candidate entities to observe the influence
on the performance of entity linking models. The left col-
umn is disassembled model, and the right is its recall of rec-
ognizing topic entities.

As is shown in Table 2, without f;, the recall of multien-
tity questions surprisingly increased while accompanied
with a sacrifice of accuracy for one-entity questions. Simi-
larly, without f, the topic entity extracting accuracy for
questions of one topic entity increases, but the accuracy for
multientity question drops. Moreover, excluding any of
other features, the performance of entity linking model
drops, which verifies their contribution for this module.
Based on the results, we can modify the entity linking mod-
ule by discarding feature f, in one-entity question’s entity
linking stage while only considering f;, f,, f,, and f; when
processing multientity questions. This will be included in
our further study.
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4.3. Question Classification. In this module, we construct 5k
artificial data based on the predefined query graphs and
attached them to the training datasets. In order to evaluate
the learning capability of our model on small amount of
data, we train our model on 10%, 50%, and 100% randomly
selected samples of primary training datasets and compare
their performance with those additionally attached with cer-
tain number of created training samples.

Notably, when adding the constructed samples, we
should carefully control the quantity according to the num-
ber of primary training samples. For one thing, negligible
improvement of the learning ability can be brought, if the
quantities of the added samples are too small. For the other,
adding too many constructed data will bring knowledge
noise, which leads the model to learn a distribution far away
from the primary datasets. In our experiment, for 10%, 50%,

and 100% primary training data, we add 0.05k, 0.5k, and
3.75k manually constructed samples, respectively. The result
is illustrated in Table 3.

From the above table, we find that when attached with
manually constructed samples, our model’s performance
has improved on both partial and whole primary data. Our
strategy can bring more significant improvement especially
when given a small amount of training data. Moreover, we
can see an obvious improvement of the prediction on train-
ing datasets, which indicates that appropriate number of cre-
ated samples can make the model better fit the distribution
of training data.

We owe the model’s out performance to the introduction
of prior knowledge. Due to the diversity of the samples in
datasets, the test set may contain questions whose semantic
structures have not appeared in training set. In this zero-
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shot or few-shot situation, the model may have difficulty
predicting the correct class. However, with additional cre-
ated samples, our model can learn the predefined semantic
structures. If these structures appear in test sets while not
included by training set, the performance of our model will
be improved. Thus, our model may need more steps to
converge.

To verify the idea, we record the loss of each iteration
when training with total primary data attached with 0%,
50%, and 75% created data, as shown in Figure 4.

We find that when training primary data attached with
0%, 50%, and 75% created data, our model converges at
about 280, 550, and 760 steps, respectively, which indicates
that with more created data, the model needs more iterations
to converge.

4.4. Beam Search. For better exhibiting the effect of beam
search (BS), we select 653 questions whose query path con-
taining 2 hops of relations to test our methods. In the exper-
iment, we design the benchmark by enumerating all the
query paths within two-hop relations of the topic entity
and recording the average number of query paths N. Nota-
bly, we only use BS algorithm at first hop, while searching
for the second hop, we only extend from the reserved Top-
K subquery path filtered by the BS algorithm and keep all
the two hops query paths. By setting different beam size,
we can observe the influence on the recall and number of
generated query paths.

Figure 5 shows that a larger beam size will bring an
increase in both recall and number of candidate query paths.
Through further observation, we notice that the growth of
both indexes slow down. The retarded growth of recall is
intelligible. Due to the existence of upper bound, if the beam
size is large enough, the recall will approach to and finally
reach 1.0. However, the retarded increasing speed of the
number of candidate tuples can illustrate something. When
designing the score function for BS, we use a PTLM model
to calculate the similarity of generated query paths and pri-
mary questions. Thus, the remaining one-hop relations are
usually more relevant to the semantic information in the pri-
mary question. As the Figure 5 shows, extended from a rela-
tion with lower semantic score, the second hop tends to
generate fewer query paths. Since the relation whose tail
has more triples may have more probability to be the com-
ponent of golden query path, we assume that the language
model can be interpreted as a probabilistic model not only
in the dimension of words but also in the dimension of

query paths.

4.5. Final Result. We evaluate our model in the CCKS2019
datasets and compare our performance with a start-of-art
model proposed by Wang et al. [42]. Their model first gen-
erated all query paths within 2 hops and adopted bridging
technologies to handle questions with multiple topic entities.
In candidate tuple ranking module, Lan [5] uses a PTLM
model to calculate scores for generated query paths. Notably,
their model introduces negative samples when training the
semantic match model. Besides, since introducing bridging
technology may harm the predicting performance of one-

TaBLE 4: Comparative results between our best model with other
models.

Method Negative sample Avg F,
Wang (baseline) 3 56.70
Wang (bridging) 3 58.60
Wang (bridging-+literal match) 3 61.50
Wang (bridging+literal match) 1 61.10
Wang (bridging+literal match) 5 59.40
Our model (with 10% data) 58.54
Our model (with 100% data) 62.55

entity questions, they adopt a literal match technology to
rerank the generated query path.

We implement their model and run it on a RTX 2080. It
must to be pointed out that due to the difference of experi-
mental equipment and subtle distinction of our datasets,
the performance we obtain has some discrepancy with Wang
proposed. However, since both our model and theirs are
trained in the same experiment environment, the compari-
son is still persuasive in Table 4.

The result shows that our method is data-efficient and
high-performed. Only using 10% data, our model can
achieve competitive result. Moreover, when using 100%
data, our model outperforms at over 1.0 point.

5. Conclusion

This paper proposes a KBQA system equipped with pre-
trained language model to handle multihop questions. We
have shown that our model has the capability of answering
multihop questions given small amount of data. Besides,
experiments have been conducted to demonstrate that, by
adopting beam search algorithm, we can achieve competitive
results with much smaller cost of calculation and storage,
which shows the superiority of our model for few-shot
KBCQA task.

Data Availability

The dataset we use to train our model is CCKS2019 dataset,
which can be accessed by the URL “https://github.com/
pkumod/CKBQA.” The knowledge base we used is also avail-
able by the URL “https://github.com/pkumod/gAnswer/tree/
pkubase.”
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